Scientists use ‘molecular-Lego’ to take CRISPR gene-editing tool to the next level

A team of researchers at Western University is playing with molecular-Lego by adding an engineered enzyme to the revolutionary new gene-editing tool, CRISPR/Cas9. Their study, published today in the Proceedings of the National Academy of Sciences (PNAS), shows that their addition makes gene-editing more efficient and potentially more specific in targeting genes.

The scientific community is buzzing with the promise that CRISPR offers for human gene-editing, opening the door to use gene-therapy to treat diseases like cystic fibrosis and leukemia.

In cystic fibrosis, for example, there is one gene mutation which causes the disease in a very large proportion of patients. If it were possible to use CRISPR to cut that mutation out of the genome, the disease could potentially be cured.

“The problem with CRISPR is that it will cut DNA, but then DNA-repair will take that cut and stick it back together,” said the study’s principal investigator, David Edgell, associate professor at Western’s Schulich School of Medicine & Dentistry. “That means it is regenerating the site that the CRISPR is trying to target, creating a futile cycle. The novelty of our addition, is that it stops that regeneration from happening.”

scissors-facebook-imageThe Western researchers have demonstrated that the creation of a new enzyme called TevCas9, which cuts the DNA in two places instead of one, makes it much more difficult for the DNA-repair to regenerate the site of the cut. The researchers created TevCas9 by adding an enzyme called I-Tevl onto the nuclease, Cas9, which is the typical enzyme used to cut DNA in CRISPR.

The study also showed that the addition of Tev shows promise at being much more specific in targeting genes and less likely to cause off-target effects in the genome, which is a significant problem for any potential therapeutic application.

“Because there are two cut-sites, there is less chance that these two sites occur randomly in the genome; much less chance than with just one site,” said co-author Caroline Schild-Poulter, associate professor at Schulich Medicine & Dentistry and a scientist at Robarts Research Institute. “This remains to be tested, but this is the hope and the expectation.”

The study resulted from a long-standing collaboration at Schulich Medicine & Dentistry between David Edgell, Caroline Schild-Poulter and Greg Gloor and was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

 

MEDIA CONTACT: Crystal Mackay, Media Relations Officer, Schulich School of Medicine & Dentistry, Western University, t. 519.661.2111 ext. 80387, c. 519.933.5944, crystal.mackay@schulich.uwo.ca @CrystalMackay

ABOUT WESTERN
Western University delivers an academic experience second to none. Since 1878, The Western Experience has combined academic excellence with life-long opportunities for intellectual, social and cultural growth in order to better serve our communities. Our research excellence expands knowledge and drives discovery with real-world application. Western attracts individuals with a broad worldview, seeking to study, influence and lead in the international community.

ABOUT THE SCHULICH SCHOOL OF MEDICINE & DENTISTRY

The Schulich School of Medicine & Dentistry at Western University is one of Canada’s preeminent medical and dental schools. Established in 1881, it was one of the founding schools of Western University and is known for being the birthplace of family medicine in Canada. For more than 130 years, the School has demonstrated a commitment to academic excellence and a passion for scientific discovery.

Follow Western Media Relations online:

Website: http://communications.uwo.ca/media/
RSS: http://feeds.feedburner.com/MediaWesternU
Twitter: https://twitter.com/mediawesternu

Downloadable Media

Images

edgell_schildpoulter_gloor