Search

Western researcher leads NASA probe of weather on brown dwarfs

Western University’s Stanimir Metchev is principal investigator of new findings on brown dwarfs, which were presented at a news conference today at the 223rd annual meeting of the American Astronomical Society in Washington by Metchev’s colleague, Aren Heinze, of Stony Brook University, New York. Metchev joined Western’s Faculty of Science and Department of Physics and […]

 January 07, 2014

 January 07, 2014

Western University’s Stanimir Metchev is principal investigator of new findings on brown dwarfs, which were presented at a news conference today at the 223rd annual meeting of the American Astronomical Society in Washington by Metchev’s colleague, Aren Heinze, of Stony Brook University, New York.

Metchev joined Western’s Faculty of Science and Department of Physics and Astronomy in July 2013.

The following media release was distributed by NASA’s Jet Propulsion Laboratory at 10:15 a.m. this morning.
For media wishing to interview Stanimir Metchev, please contact Jeff Renaud, Senior Media Relations Officer, Western University, 519-520-7281, jrenaud9@uwo.ca, @jeffrenaud99

***

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIFORNIA 91109. TELEPHONE 818-354-5011
https://www.jpl.nasa.gov

Whitney Clavin 818-648-9734
Jet Propulsion Laboratory
whitney.clavin@jpl.nasa.gov

EMBARGOED BY AAS FOR 10:15 A.M. EST, JAN. 7, 2014

Stormy Stars? NASA’s Spitzer probes weather on brown dwarfs

Swirling, stormy clouds may be ever-present on cool celestial orbs called brown dwarfs. New observations from NASA’s Spitzer Space Telescope suggest that most brown dwarfs are roiling with one or more planet-size storms akin to Jupiter’s “Great Red Spot.”

“As the brown dwarfs spin on their axis, the alternation of what we think are cloud-free and cloudy regions produces a periodic brightness variation that we can observe,” said Stanimir Metchev of Western University, Canada. “These are signs of patchiness in the cloud cover.”

Metchev is principal investigator of the brown dwarf research. The results were presented at a news conference today at the 223rd annual meeting of the American Astronomical Society in Washington by Metchev’s colleague, Aren Heinze, of Stony Brook University, New York.

Brown dwarfs form as stars do, but lack the mass to fuse atoms continually and blossom into full-fledged stars. They are, in some ways, the massive kin to Jupiter.

Scientists think that the cloudy regions on brown dwarfs take the form of torrential storms, accompanied by winds and, possibly, lightning more violent than that at Jupiter or any other planet in our solar system. However, the brown dwarfs studied so far are too hot for water rain; instead, astronomers believe the rain in these storms, like the clouds themselves, is made of hot sand, molten iron or salts.

In a Spitzer program named “Weather on Other Worlds,” astronomers used the infrared space telescope to watch 44 brown dwarfs as they rotated on their axis for up to 20 hours. Previous results had suggested that some brown dwarfs have turbulent weather, so the scientists had expected to see a small fraction vary in brightness over time. However, to their surprise, half of the brown dwarfs showed the variations. When you take into account that half of the objects would be oriented in such a way that their storms would be either hidden or always in view and unchanging, the results indicate that most, if not all, brown dwarfs are racked by storms.

“We needed Spitzer to do this,” said Metchev. “Spitzer is in space, above the thermal glow of the Earth’s atmosphere, and it has the sensitivity required to see variations in the brown dwarfs’ brightness.”

The results led to another surprise as well. Some of the brown dwarfs rotated much more slowly than any previously measured, a finding that could not have been possible without Spitzer’s long, uninterrupted observations from space. Astronomers had thought that brown dwarfs sped up to very fast rotations when they formed and contracted, and that this rotation didn’t wind down with age.

“We don’t yet know why these particular brown dwarfs spin so slowly, but several interesting possibilities exist,” said Heinze.  “A brown dwarf that rotates slowly may have formed in an unusual way — or it may even have been slowed down by the gravity of a yet-undiscovered planet in a close orbit around it.”

The work may lead to a better understanding of not just brown dwarfs but their “little brothers”: the gas-giant planets. Researchers say that studying the weather on brown dwarfs will open new windows onto weather on planets outside our solar system, which are harder to study under the glare of their stars. Brown dwarfs are weather laboratories for planets, and, according to the new results, those laboratories are everywhere.

Other authors include: Daniel Apai and Davin Flateau of University of Arizona, Tucson; Mark Marley of NASA’s Ames Research Center, Moffett Field; Jacqueline Radigan of Space Telescope Science Institute, Baltimore, Md.; Etienne Artigau of Universite de Montreal, Canada; Adam Burgasser of University of California San Diego; Peter Plavchan of NASA’s Exoplanet Science Institute at the California Institute of Technology, Pasadena; and Bertrand Goldman of Max-Planck Institute for Astronomy, Germany.

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visit https://spitzer.caltech.edu and https://www.nasa.gov/spitzer

For a supporting image, please visit: https://communications.uwo.ca/media/img/artist-concept.jpg

Image caption:

This Just In: Storms Expected on Brown Dwarfs

This artist’s concept shows what the weather might look like on cool star-like bodies known as brown dwarfs. These giant balls of gas start out life like stars, but lack the mass to sustain nuclear fusion at their cores, and instead, fade and cool with time.

New research from NASA’s Spitzer Space Telescope suggests that most brown dwarfs are racked with colossal storms akin to Jupiter’s famous “Great Red Spot.” These storms may be marked by fierce winds, and possibly lightning. The turbulent clouds might also rain down molten iron, hot sand or salts — materials thought to make up the cloud layers of brown dwarfs.

Image credit: NASA/JPL-Caltech/University of Western Ontario/Stony Brook University

Topic

Latest Media Coverage